Меню

Включение прибора при включении другого

2 Схемы

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

Включение или отключение по достижению напряжения

Если вы читаете этот материал, значит вам понадобилось устройство для включения или отключения нагрузки по достижению определенного напряжения. Не важно для чего – отключить заряд аккумулятора от ЗУ по предельному вольтажу, подключить резервное питание при снижении основного источника или чего-там ещё. Все эти функции может сделать простая и 100 раз проверенная схема на операционном усилителе (ОУ) LM358 плюс реле. С их помощью соберем эту схему, а также подробно рассмотрим принцип действия, чтоб вы смогли адаптировать её под свои нужды.

Схема простого тестера аккумуляторов

Для начала задействуем модуль как LED тестер аккумуляторов.

Схема питается от 12 В. За аккумулятором находится стабилизатор напряжения, благодаря которому на чип LM358 поступает питание 5 В. Напомним, что контакт 3 – это так называемый вход неинвертирующий In (+), а контакт 2 – это вход, инвертирующий In (-). Если напряжение при In (+) > In (-) на выходе, то получим напряжение, близкое к напряжению подаваемому на усилитель, и загорится красный светодиод. В противном случае, то есть когда In (+) меньше или равно In (-), выходное напряжение близко к 0 В, светодиод не загорится.

Ножка 3 ОУ будет подключена к одному из полюсов аккумулятора. Второй вывод подключается к земле и источнику питания через потенциометр 10 кОм. Резистор 1 МОм и конденсатор 100 нФ предотвращают возбуждение схемы. При сборке поместите микросхему на макетную плату, а затем отрегулируйте ручку потенциометра так, чтобы напряжение вольтметра было 1,45 В. Почему такое значение? Просто будем тестировать обычные пальчиковые батареи с номинальным напряжением 1,5 В. Когда они новые, их напряжение составляет около 1,6 В, когда они разряжены, их напряжение будет например 1,2 В или меньше. Напряжение 1,45 В означает, что аккумулятор еще для чего-то годен.

Если подключим к схеме новую исправную батарею, напряжение на In (+) будет, например, 1,6 В и будет больше, чем напряжение на In (-), которое будет 1,45 В. In (+) > In (-), значит светодиод горит. В данном случае имеем свежий элемент с напряжением 1,57 В.

Если подключим подуставшую батарею к схеме, напряжение на In (+) будет, например, 1,2 В, и значит ниже, чем напряжение на In (-), которое выставили на 1,45 В. Имеется In (+) Электромагнитные реле: а) 12 В, b) 5 В

Реле – это электромеханический элемент, внутри которого есть переключаемые контакты, а также катушка, которая генерирует магнитное поле.

Ток, протекающий через катушку реле (намотанные витки провода), создает магнитное поле, которое притягивает железный якорь, что, в свою очередь, вызывает замыкание или размыкание соответствующих контактов.

В зависимости от типа реле: 5 В или 12 В или другое какое напряжение, соберите схему на рисунке а или б. В этой схеме использовали реле на напряжение 12 В.

Как проверить реле о котором ничего не знаем и хотим узнать, для каких клемм используются подключения?

Мультиметр будет полезен в этой задаче. Настроим его на измерение сопротивления в диапазоне, например, 2 кОм, а затем приложим щупы к отдельным парам контактов реле, проверив, какое сопротивление будет между ними. Таким образом нужно найти пару контактов, между которыми сопротивление будет большим (например более 100 Ом), и пару контактов, между которыми сопротивление будет наименьшим (порядка 1 Ом).

Высокое сопротивление покажет, что нашли катушку, создающую магнитное поле. Если подадим напряжение на клеммы с высоким сопротивлением, ток будет течь через катушку и контакты, в зависимости от типа реле замкнутся или разомкнуться (нормально открытое и нормально закрытое реле).

Низкое сопротивление будет означать, что мы обнаружили замкнутые контакты реле. В случае нормально разомкнутых реле между двумя контактами вообще не будет сопротивления, потому что когда через реле не протекает ток, они остаются разомкнутыми.

Принципиальная схема автомата с реле: а) на 5 В, b) на 12 В

Далее вид на собранную плату с реле и дополнительным светодиодом в цепи контактов реле.

Если напряжение поступающее на неинвертирующий вход LM358, больше, чем на инвертирующем входе, то есть In (+) > In (-), то получим напряжение на выходе, которое вызовет протекание тока в базовой цепи и таким образом включит транзистор. Через катушку реле и транзистор (в цепи коллектор-эмиттер) будет протекать ток, который создаст магнитное поле, что приведет к замыканию контакта и протеканию тока через светодиод или другую нагрузку, которую вам надо подключить.

Если напряжение на входах операционного усилителя изменится и In (+) меньше или равно In (-), на выходе получим напряжение, близкое к нулю, которое будет слишком низким, чтобы заставить ток течь в цепи базы – транзистор будет выключенный. Как следствие, ток тоже перестанет течь через реле. Но на сердечнике, на котором намотана катушка, сохраненная энергия останется и ее нужно куда-то девать, поэтому в цепи, близкой к катушке реле, есть быстрый диод 1N4148. Если забыть об этом диоде при проектировании схемы (что является довольно частой ошибкой начинающих электронщиков), энергия от сердечника реле создаст высокое напряжение на выводах катушки, что приведет к повреждению транзистора!

Читайте также:  Прибор для измерения силы магнитов

Для чего используются реле тут? Благодаря им небольшой ток, протекающий от низковольтной схемы, активирует мощную нагрузку, например мотор с питанием 220 В или автомобильный аккумулятор с током в несколько ампер. Просто выставьте напряжение срабатывания и подключитесь к нужным контактам реле – на отключение или включение устройства при достижении заданного напряжения. Успехов в бою!

Источник

Электроника для всех

Блог о электронике

Включить-выключить. Схемы управления питанием

С батарейным питанием все замечательно, кроме того, что оно кончается, а энергию надо тщательно экономить. Хорошо когда устройство состоит из одного микроконтроллера — отправил его в спячку и все. Собственное потребление в спящем режиме у современных МК ничтожное, сравнимое с саморазрядом батареи, так что о заряде можно не беспокоиться. Но вот засада, не одним контроллером живо устройство. Часто могут использоваться разные сторонние периферийные модули которые тоже любят кушать, а еще не желают спать. Прям как дети малые. Приходится всем прописывать успокоительное. О нем и поговорим.

▌Механическая кнопка
Что может быть проще и надежней сухого контакта, разомкнул и спи спокойно, дорогой друг. Вряд ли батарейку раскачает до того, чтобы пробить миллиметровый воздушный зазор. Урания в них для этого не докладывают. Какой нибудь PSW переключатель то что доктор прописал. Нажал-отжал.

Вот только беда, ток он маленький держит. По паспорту 100мА, а если запараллелить группы, то до 500-800мА без особой потери работоспособности, если конечно не клацать каждые пять секунд на реактивную нагрузку (катушки-кондеры). Но девайс может кушать и поболее и что тогда? Приматывать синей изолентой к своему хипстерскому поделию здоровенный тумблер? Нормальный метод, мой дед всю жизнь так делал и прожил до преклонных лет.

▌Кнопка плюс
Но есть способ лучше. Рубильник можно оставить слабеньким, но усилить его полевым транзистором. Например вот так.

Тут переключатель просто берет и поджимает затвор транзистора к земле. И он открывается. А пропускаемый ток у современных транзисторов очень высокий. Так, например, IRLML5203 имея корпус sot23 легко тащит через себя 3А и не потеет. А что-нибудь в DPACK корпусе может и десяток-два ампер рвануть и не вскипеть. Резистор на 100кОм подтягивает затвор к питанию, обеспечивая строго определенный уровень потенциала на нем, что позволяет держать транзистор закрытым и не давать ему открываться от всяких там наводок.

▌Плюс мозги
Можно развить тему управляемого самовыключения, таким вот образом. Т.е. устройство включается кнопкой, которая коротит закрытый транзистор, пуская ток в контроллер, он перехватывает управление и, прижав ногой затвор к земле, шунтирует кнопку. А выключится уже тогда, когда сам захочет. Подтяжка затвора тоже лишней не будет. Но тут надо исходить из схемотехники вывода контроллера, чтобы через нее не было утечки в землю через ногу контроллера. Обычно там стоит такой же полевик и подтяжка до питания через защитные диоды, так что утечки не будет, но мало ли бывает…

Или чуть более сложный вариант. Тут нажатие кнопки пускает ток через диод на питание, контроллер заводится и сам себя включает. После чего диод, подпертый сверху, уже не играет никакой роли, а резистор R2 эту линию прижимает к земле. Давая там 0 на порту если кнопка не нажата. Нажатие кнопки дает 1. Т.е. мы можем эту кнопку после включения использовать как нам угодно. Хоть для выключения, хоть как. Правда при выключении девайс обесточится только на отпускании кнопки. А если будет дребезг, то он может и снова включиться. Контроллер штука быстрая. Поэтому я бы делал алгоритм таким — ждем отпускания, выбираем дребезг и после этого выключаемся. Всего один диод на любой кнопке и нам не нужен спящий режим 🙂 Кстати, в контроллер обычно уже встроен этот диод в каждом порту, но он очень слабенький и его можно ненароком убить если вся ваша нагрузка запитается через него. Поэтому и стоит внешний диод. Резистор R2 тоже можно убрать если нога контроллера умеет делать Pull-down режим.

Читайте также:  Приспособления приборы для кухни

▌Отключая ненужное
Можно сделать и по другому. Оставить контроллер на «горячей» стороне, погружая его в спячку, а обесточивать только жрущую периферию.

Выделив для нее отдельную шину питания. Но тут надо учесть, что есть такая вещь как паразитное питание. Т.е. если вы отключите питание, например, у передатчика какого, то по шине SPI или чем он там может управляться пойдет питание, поднимется через защитные диоды и периферия оживет. Причем питания может не хватить для его корректной работы из-за потерь на защитных диодах и вы получите кучу глюков. Или же получите превышение тока через порты, как результат выгоревшие порты на контроллере или периферии. Так что сначала выводы данных в Hi-Z или в Low, а потом обесточивайте.

▌Выкидываем лишнее
Что-то мало потребляющее можно запитать прям с порта. Сколько дает одна линия? Десяток миллиампер? А две? Уже двадцать. А три? Параллелим ноги и вперед. Главное дергать их синхронно, лучше за один такт.

Правда тут надо учитывать то, что если нога может отдать 10мА ,то 100 ног не отдадут ампер — домен питания не выдержит. Тут надо справляться в даташите на контроллер и искать сколько он может отдать тока через все выводы суммарно. И от этого плясать. Но до 30мА с порта накормить на раз два.

Главное не забывайте про конденсаторы, точнее про их заряд. В момент заряда кондера он ведет себя как КЗ и если в вашей периферии есть хотя бы пара микрофарад емкостей висящих на питании, то от порта ее питать уже не следует, можно порты пожечь. Не самый красивый метод, но иногда ничего другого не остается.

▌Одна кнопка на все. Без мозгов
Ну и, напоследок, разберу одно красивое и простое решение. Его несколько лет назад набросил мне в комменты uSchema это результат коллективного творчества народа на его форуме.

Одна кнопка и включает и выключает питание.

При включении, конденсатор С1 разряжен. Транзистор Т1 закрыт, Т2 тоже закрыт, более того, резистор R1 дополнительно подтягивает затвор Т1 к питанию, чтобы случайно он не открылся.

Конденсатор С1 разряжен. А значит мы в данный момент времени можем считать его как КЗ. И если мы нажмем кнопку, то пока он заряжается через резистор R1 у нас затвор окажется брошен на землю.

Это будет одно мгновение, но этого хватит, чтобы транзистор Т1 распахнулся и на выходе появилось напряжение. Которое тут же попадет на затвор транзистора Т2, он тоже откроется и уже конкретно так придавит затвор Т1 к земле, фиксируясь в это положение. Через нажатую кнопку у нас С1 зарядится только до напряжения которое образует делитель R1 и R2, но его недостаточно для закрытия Т1.

Отпускаем кнопку. Делитель R1 R2 оказывается отрезан и теперь ничто не мешает конденсатору С1 дозарядиться через R3 до полного напряжения питания. Падение на Т1 ничтожно. Так что там будет входное напряжение.

Схема работает, питание подается. Конденсатор заряжен. Заряженный конденсатор это фактически идеальный источник напряжения с очень малым внутренним сопротивлением.

Жмем кнопку еще раз. Теперь уже заряженный на полную конденсатор С1 вбрасывает все свое напряжение (а оно равно напряжению питания) на затвор Т1. Открытый транзистор Т2 тут вообще не отсвечивает, ведь он отделен от этой точки резистором R2 аж на 10кОм. А почти нулевое внутреннее сопротивление конденсатора на пару с его полным зарядом легко перебивает низкий потенциал на затворе Т1. Там кратковременно получается напряжение питания. Транзистор Т1 закрывается.

Тут же теряет питание и затвор транзистора Т2, он тоже закрывается, отрезая возможность затвору Т1 дотянуться до живительного нуля. С1 тем временем даже не разряжается. Транзистор Т2 закрылся, а R1 действует на заряд конденсатора С1, набивая его до питания. Что только закрывает Т1.

Отпускаем кнопку. Конденсатор оказывается отрезан от R1. Но транзисторы все закрыты и заряд с С1 через R3 усосется в нагрузку. С1 разрядится. Схема готова к повторному включению.

Вот такая простая, но прикольная схема. Вот тут еще полно реализаций похожих схем. На сходном принципе действия.

Спасибо. Вы потрясающие! Всего за месяц мы собрали нужную сумму в 500000 на хоккейную коробку для детского дома Аистенок. Из которых 125000+ было от вас, читателей EasyElectronics. Были даже переводы на 25000+ и просто поток платежей на 251 рубль. Это невероятно круто. Сейчас идет заключение договора и подготовка к строительству!

А я встрял на три года, как минимум, ежемесячной пахоты над статьями :)))))))))))) Спасибо вам за такой мощный пинок.

Читайте также:  Прибор для черчения тушью гдр

59 thoughts on “Включить-выключить. Схемы управления питанием”

Вопрос новичка. Насколько влияет дребезг контактов на работу этих схем?

Тут все сильно растянуто во времени из-за конденсаторов, так что практически не влияет. Можно просто поставить кондер побольше и все.

«резистор R1 дополнительно подтягивает затвор Т1 к питанию, чтобы случайно он не открылся»
Справедливо для любых вышеописанных схем. Особенно, первая, где транзистор усиливает кнопку.

А на первой схеме разве не нужно стянуть затвор на землю? Полевик не будет самопроизвольно переключаться?

Ой, то есть подтянуть к питанию. Там же кнопка замыкает на землю.

Да, там тоже не помешает. Вечером добавлю в картинку резисторы. Не все же обходиться голыми концептами 🙂

Вот статья так статья! Пригодится, спасибо ^^

Традиционное спасибо за сайт =) И нубовский вопрос по питанию: Где можно посмотреть решение, когда устройство по умолчанию работает от батареек (НЕ аккумуляторов), но позволяет подключить себя к внешнему питанию, отрубив при этом батарейное?
Просто диод от батареек в сторону потребителя не хочется: и так напруги мало, так еще и диод на себя отъест. А в буферном режиме (вроде так называется, когда аккум параллельно питанию подключен) батарейки вряд ли выживут. Ну и хочется, чтобы схема переключения питания сама не ела батарейки.
В принципе напрашивается реле, отключающее батарейки при внешнем питании, но м.б. есть что-то изящнее (и меньше)?

А что переключение в штепселе не достаточно изящное решение? Почти все штекеры имеют контактную группу которая размыкается при втыкании.

Штепсель с переключением — мысль, но.. В разъеме не только питание планируется, а типа 1-wire (т.е. не меньше 3-х линий). Пока не встречал таких доступных с переключением.

Штеккеры для наушников.
бывают двух- трех- четырезконтактными.
Есть к ним гнезда с размыкаемыми N-1 контактами.(кроме массы).

Думал написать «стаднартное решение», но таки задолбался искать готовую картинку 🙂 Нужен Р-канальный полевик, диод Шоттки и резистор/конденсатор. Ну и внешнее питание должно быть выше, чем у батареек

Спасибо и боюсь, вы меня переоцениваете =) Я правильно понимаю, что речь идет о куске из FET2 и SD4 на схеме по ссылке? Т.е. полевику на затвор подается напруга извне (когда она есть) закрывая его, а диод не дает батарейке питать внешнюю линию (и затвор того самого полевика)?

Да, плюс конденсатор С24.
во, красивая картинка из «запасов»: https://yadi.sk/i/A27VeKM33SLsG6

И еще раз спасибо, и на этот раз вопрос по картинке =) DI в http://easyelectronics.ru/upravlenie-moshhnoj-nagruzkoj-postoyannogo-toka-chast-3.html рисовал, что ток идет против защитного диода, а на картинке (и на аналогичных на других ресурсах) везде нарисовано так, как у вас. Как так?

На самом деле полевому транзистору пофигу куда там ток течет через канал. Он двунаправленный. (в отличии от биполярного, где диод образуется на пн переходе). Главное выдержать потенциал Vgs

А кто-нибудь встречал решение на дискретных элементах, реализующие задачу управления питанием одной кнопкой по алгоритму: длинное нажатие — включение, короткое нажатие — отключение?
Чтобы точно можно было знать, что отключил условно невидимую нагрузку, а не изменил значение «триггера».

Емкостями и резисторами заряда-разряда можешь менять в некоторых пределах задержки.
Диодами их, если что, развязывать.

Ди, ты начал писать? Снова передаешь знания подрастающим поколениям? 🙂

Последняя схема красивая, правда если ею запитывать сильно жрущие цепи, где стоят электролиты по питанию или не дай бог супер пупер конденсаторы, тогда транзистор T2 хрен вырубишь (затвор не сразу потеряет питание), схема не выключится. Можно на выходе диод шоттки влепить, а затвор Т2 прижать к земле через резистор 10кОм.

Есть ещё важная схема силовой автоматики — динисторный включатель так сказать. Часто применяется на мотоциклах с системами зажигания типа CDI и маховичными генераторами. Позволяет осуществлять запуск без АКБ, выделяя всё питание на систему пуска зажигания. Благодаря динистору в затворной цепи главного ключа питания бортовой электроники, оная не включается до запуска двигателя, соответственно оставляет все те крохи электричества, что выдаёт генератор, для зарядки емкостей CDI. Аналогичные схемы видел во многих устройствах с питанием от ненадёжного источника — ветряка, гидрогенератора и т.д.

Там динистор стоит на напряжение питания электроники чтоль?

Источник

Adblock
detector